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T}he Convergence Rate for Difference Approximations 
to Mixed Initial Boundary Value Problems 

By Bertil Gustafsson 

Abstract. The convergence rate for difference approximations to mixed initial boundary 
value problems for hyperbolic systems is treated. Assuming that the approximation at the 

boundary has one-order lower accuracy than at inner points, conditions are given such 

that the overall accuracy of the solution is kept at the higher order. 

1. Introduction. When dealing with difference approximations to mixed initial 
boundary value problems, one often has trouble defining the difference operators near 
the boundaries. As an example, consider the equation au/at = au/ax, which is well 
posed in L2(0, 00) for 0 < x < oo, t > 0 without any boundary condition given at 
x = 0. However, any difference approximation, that uses centered difference operators 
for approximating au/ax, breaks down at x = 0 since no values are defined for x < 0. 

One possibility is to use one-sided operators at the boundaries, another to per- 
form some sort of extrapolation. For various reasons, e.g., stability considerations, one 
uses methods, which yield one-order lower accuracy than the one used at inner points. 
The question then is if, despite this fact, the overall accuracy of the solution to the 
difference approximation can be kept at the higher order. In this paper, conditions are 
given such that this is the case. 

The theory used is the one developed in [1], and it is assumed that the reader is 
familiar with that paper. 

2. Definitions, Assumptions and Main Theorems. We consider a hyperbolic first- 
order system of partial differential equations 

(2.1a) aU(x, t)/at = AaU(x, t)/ax + BU(x, t) + F(x, t), 0 < x < oo, t > 0, 

where A is a diagonal matrix, and 

-I 0- 

A= A,l 

with Al of order 1 x 1, A' < 0 and A" of order (n - 1) x (n - 1), Al(O)> 0. For 

simplicity, we treat only the constant coefficient case; the technique used in [1] for the 
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stability proofs easily allows the treatment of variable coefficients. 

Initial and boundary conditions are 

(2.1b) U(x, 0) = U0()(x), O Sx < 00, 

(2.1c) UI(O, t) = SUII(O, t) + G(t), t > 0, 

where UI, UII correspond to the partition of A and where S is a- r-e-c1ng.ar- matfix-. 

Using the notation V>(t) = V(xv, t), xV = vh, v = -r + 1, -r + 2, , the 

difference wbeimfn bas thJe. SaneuA- f(orm. 
S 

(2.2a) Q-1 Vv(t + k) = E QVvv(t - ak) + kFv(t), v = 1, 2, ... 
a0= 

where 
p 

Qa= Aa Ei, EVv(t) = Vv+ (t). 
j=-r 

Initial and boundary conditions are 

(2.2b) Vv(ak) = Va), a = 0, 1, ,s, v =-r + ,-r + 2, 

(2.2c) Vv(t + k) = E S(v)Vi(t - ak) + Gv(t), v = -r + 1, -r + 2, ,O, 
a=-1 

where S(v) = Eq -C(v)Ei. a j10 "I-a 

The same assumptions on the difference approximation are made as in [1]. In 

particular, it is assumed that (2.2a), (2.2c) can be solved boundedly for V(t + k) [1, 

Assumption 3.1 ]. 
We define difference operators in both the x- and t-directions by 

D+X Wv(t) = (Wv+ 1 (t) - Wv(t)yh, 

D+ t Wv(t) = (Wv(t + k) - Wv(t))/k. 
With I I denoting the Euclidian vector norm, we also define 

00 

11 W(t)112 = I IWV(t) 12 h, 
v=-r+ 1 

oo 

11tWl2 = - 1 W(ak) k- 
a=o 

Sometimes, we will also use the notation IIpII1 for functions q'(t) which are not pri- 

marily defined for v < 0. In those cases, the missing values are defined as zeros. 

We now make 
Assumption 2.1. The order of accuracy is m for (2.2a) and at least m - 1 for 

(2.2b), (2.2c), and it is assumed that m > 1. 

To be more precise, this means that, for all sufficiently smooth solutions to (2.1), 
we have for W = U - V: 
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s 

Q-1 W(t + k) = , Qa W(t - ak) + hm +d,(t), ar=o 

(2.3a)~~~~~~ v=1, 2,***- ; t =sk, (s+lI)k,* 

(2.3b) Wj(ak) = haej(ak), v = -r +1,-r + 2, * * *; a =;O, 1, * *, st 

S 

WV(t + k) = Sav)W, (t - ak) + hafv(t), 
a=-1 

(2.3c) 
v = - r + 1 , - r + 2, - - -, 0; t = sk, (s + I)k, 

where d, e, f are bounded functions and ,B > m. (We always assume k/h = const.) 
As an example consider the equation aU/at = aU/ax with initial condition 

U(x, 0) = e(x) and the second-order leap-frog difference approximation Wv(t + k) = 

(k/h)(WV+ 1 (t) - Wv- I(t)) + Wj(t - k). With WJ(O) = e(xv), Wj(k) can be defined by 

Wj(k) = (k/h)(Wv+ 1 (0) - WJ(O)) + WJ(O) which is first-order accurate but locally of 
second order, which means that ,B = 2 in (2.3b). As boundary condition we could use 

Wo(t + k) = WO(t) + (k/h)(W1(t) - WO(t)) or WO(t) = 2W,(t) - W2(t), which both 
are of first-order accuracy according to our definition, i.e., ,B = 2 in (2.3c). 

Let uv(t) be the solution of the discrete Cauchy problem, i.e., the difference 
scheme, (2.2a) with the initial condition (2.2b) defined for v = 0, ? 1, + 2, . Then 
we make 

Assumption 2.2. The difference approximation is stable for the Cauchy problem, 
i.e., if FV(t) 0, then there are constants K > 0, al > 0 such that 

00 s oo 

(2.4) luv(t)12 h S Ke ltE E lu jak)12h. 
v=-oo Fa=O v=-oo 

Certain smoothness assumptions on d, e, f are required; these will be specified in 
the theorems. We also need a certain compatibility between initial and boundary con- 
ditions: 

Assumption 2.3. The functions ev(t) and fv(t) are such that 

fv(sk) - hm (ev(sk + k) - E S(v)el (sk -,gk ) 0 (h), 

(2.5) a- 
= - + 0. 

Here, ev(sk + k) is defined by Q-1 ev(sk + k) = Es =OQae(sk - ak) + hm + ' d (sk). 
Connected with (2.2a, c), there is the resolvent equation 

s\ 
(2.6a) Q Y 1 Q w V = 1, 2, 

s 
(2.6b) WV- a z--s>wi gv, v =r+ 1, **, O 

a=-1 
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which can be rewritten in one-step form 

WV,+ -Mw1 Jr G1,, WV, (wV+p_l, **Wv->r)f- 

After making the transformation y = Tw as in Sections 8, 9, 10 of [1], the boundary 
conditions can be written DI(z)yl + DII(z)yl' = g + R(G), where yI is that part of y 
which lies in 12(0, o0) for G 0, IzI > 1. The properties of Det(DI(z)) for IZI > 1 are 
crucial for the stability. 

We can now state our first theorem: 
THEOREM 2.1. Assume that there is a constant K such that the solutions to (2.6) 

fulfill 
0 0 

(2.7) E IWvI2 SK E I 12 
v=-r+1 v=-r+l 

for all Izi with Iz I > 1, or, equivalently, 

(2.8) Det(DI(z)) # 0 forall lzl with Izl >1. 

Then there are constants c1 and ao , o(O > 0 such that 

II aWI ? / aX-% ) 2 

1 ?k __ lle tw1 + k )1 e-atW12t 

a -% (o 0 
< c h2m 1 e- tfi112 + (a _ a )-l 

v'=-r+ 1 

(2.9) *? [(2 ? - / lie(ok)112 + IID+xe(ok) 1I]) 

+ IIe1 CtdI I2h 

for all at with a > max(ot0, a,) (oa1 is defined by (2.4)). Therefore, if the norms in 
the right-hand side of (2.9) are bounded independently of h, the convergence rate is of 
order m. (The proof of Theorem 2.1 is given in the next section.) 

It should be noted that, for the constant coefflcient case treated here, the con- 
stants ao0 ?e can be taken zero if there is no lower-order term in (1.1). However, the 
results given here are valid even for variable coefficients since the main theorems used 
from [1] are proved by the energy method (see also Sections 10, 11 of [2] where the 
variable coefflcient case is treated). 

An exponential growth (ao, > 0) can also occur for the half-strip problem 0 S 
x S 1, t > 0, even with constant coefficients. Also, in this case, the results here are 
valid, and co is not necessarily equal to al . 

With a slightly stronger smoothness requirement on d, e, f, we are able to weak- 
en the condition (2.8) and still find the convergence rate to be of order m: 

THEOREM 2.2. Assume that Det(DI(1)) $ 0, and that there is a constant K such 
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that, for all z with Iz I> 1, the solutions to (2.6) with =0, v 1, 2, -*, satisfy 

(2.10) IWl 'U K zI 0 2 h. x (IZI - 1 2 iv El h 

TAen, there are constants C2 and oto, ao > 0 such that 

0o ? _ 2 /a -tW\2 I + ak ___ 1 II+WvIIa + k 

CZch2 CIO 0 0 \02 6 22m a O 
Co 
etft '112 + a-I ICg,le'kD tfv(ak)l) 

v--r+ 1v=-r+ 1 a=s 

a- a0 na- a \ / s 
+ ___a__ -1e1)k) sup I d ('r)IIi 

1 + (-a) L + / a0 e) I + sk X 

+ E IIDe(k)II +d(T) 
0=0 

+X x 
>sk 

+ 

+ a-l (a -a1)-2 [ (IID+ te(ok)112 + IID+XD D e(ok)II2) 
a=0 

+ sup IID+ d'(r)II2 + sup IID D d(T)II 12 
r>sk T>sk +X +t 

for all a with oa > max(ao, a,) (a1 again defined by (2.4)). Under the assumption 
that the norms in the right-hand side of (2.11) are bounded independently of h, the 
convergence rate is again of order m. (The proof of Theorem 2.2 is given in the next 
section.) 

3. Proof of the Theorems. 
Proof of Theorem 2.1. The functions ev(ok) in (2.3b) are extended in a smooth 

way for v < -r such that they are zero for vh < - 1, say, and such that 

(3.1 a) I 1ea(ak)I2h < const lIe(uk)112, 
v=-oo 

v=00 

(3.1b) E Dtx~+,eja<k)l h<constllD+. e(ak)1I' 

for a 0, 1, - 's. 

We define the Cauchy problem 
S 

(3.2a) Q_1uv(t + k) = E Q,u,(t - (k) 

(3.2b) u(ak) = hmee(ak), a = 0, 1, s 

and the corresponding one for the divided differences D+xuv(t). By Assumption 2.2, 

IIu(t)IIX and IID+ xu(t)llx can be estimated, and taking (3.1) into account, we obtain 
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S 

lu,(t))2 < conste" th2mn E (lIe(ak)112 + IID? e(ok)II2), 
(3.3) a-+ 

v , ?1, ?2, 

The function v W - u satisfies 

S 

(3.4a) Q_lv,(t + k) = E Q,vL,(t - uk) + hm+ldL,(t), v = 1, 2, 
G=0 

(3.4b) VL,(uk) = O, a=O, 1, * s; v=-r + 1,-r + 2, 

S 

(3.4c) v>(t + k) = S v)vl(t-gk) + hmg= (t), v--r + 1, ., , 
u=-1 

where 
s 

hmgv(t) htmfv(t) + uv(t + k)- cj Sr')u1(t - k). 

Taking (3.3) into account, we obtain from Theorem 5.1 in [1] 

1 ZE II e-tv~II2 + K Ie+aVk) + Ok v=-r+1 ak x-o t 

< const h2' a + ( e tvII2 + 1 

E [lIe(ok)112 + IID+xe(k)II 2) + IIe-atdII 2t( 

Combining this inequality with 
S 

Ule-tuI,t S const h2m(o@ - a,)-' lIe(ok)112 

and (3.3), we obtain (2.9), and the theorem is proved. 
Proof of Theorem 2.2. As in the above proof, the Cauchy problem is first solved 

with extended initial functions, but with the term h' + 1dj(t) added to the right-hand 
side of (3.2a), where dv(t) is extended in the same way as ev(t). We then obtain for 

(3.5) a le atuI12 < 6 const h2m(a - ,l)-' (tE lIe(ok)112 + sup lid(T)ll2). 
ar=o T>sk 

We also get 

S 

luv(t)12 < const ea l th2 m II (lleok)lI + IID+ e(k) 11U) 
ar=O 

(3.6) 

+ sup lid(T)ll + SUP lID+d(T)ll .2 
sk < T < t sk < T < t 
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It now remains to estimate the solution vj(t) of the problem (3.4) without any 
inhomogeneous term in (3.4a), but with gj(t) in (3.4c) defined by 

( s 

hmg,(t) = hmf,(t) - u,(t + k) - S Sfvu 1 (t - ok). 
(3.7) (a- 

v = -1r + 0; t > sk. 

We construct a function g"(t) which, for every fixed k, is piecewise differentiable in t: 

(3.8) g"(t + Ok) = (1 - 0)gv(t) + Ogv(t + k), t = sk, (s + 1)k, , 0 < 0?1. 

v"(t) is defined, for all t > 0, as the solution of (3.4) with g = g in (3.4c). We make 
the variable transformation -w(t) = e-tiivZ (t) for t > sk and define wZ(t) =g(t) 0 
for t < sk. From our smoothness assumptions, we know that 

' 
(sk) = O(h), and that 

(3.9) Iaj'(t)/atI < const, - o < t < 00, 

independently of h. The Eqs. (3.4) are Fourier transformed, and with z -e(?t+iw)k 

Wv(X ca) = Fwm(t), g (w, a) = hme-iwkFe-a (t+k)g(t), 

Eqs. (2.6) are obtained. We need the following lemma: 
LEMMA. 3.1. Under the assumptions in Section 2, the function g(co, a) satisfies 

gi"(ci c)12 6K(a + IcoI)2 -( lea tD+ tf(k)Ik) + (o - 1 

a=S 
(3.10) . [~~~~~E(IID+te(Yk)112 + IID+ D+e(Gk)II 2) 

+ sup IID+t d(T)II + sup IID+D+ td(T)112i , 
Tr <sk 

+ r ,s k +X+ 

where K is independent of h, d,(t), e,(t), f,(t). 
Proof. Considering our Cauchy problem for uj(t) -and uj(t + k), we can imme- 

diately estimate IID+ u(t)IIx and IID+xD+tu(t)llx. From our smoothness assumptions 
and the definition of gj(t), we therefore get 

D+ tg,(t)(12 ID+tfe 

(3.11) + const e t u I E (IID e(ak)Il + lID+I D+ e(ak)ll 2) 
a=O 

+ sup IID+ d(T)112 + sup IID+ D+td(T)l - 
skST?t sk?T?t 

Using integration by parts, we obtain 

h-m i' (, o)l < const (oa + Ilc)-ly le-(a +i- )tl lagv(t)/atldt, 

and the lemma follows from (3.8), (3.11). 
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The matrix DT(z) defined in Section 2 has, by assumption, the property 
Det(DI(1)) = 0, hence, by continuity, there is a constant 6 > 0 such that Det(D'(z)) # 
0 for lIhl < 6, z = e(a+iw)k, k < ko ko > 0. The function g is now divided into 
two parts: 

f v(w a) for llc<6h-1, 
g(1)(&, o) = 

0O else, 

g(2)(9v ct) = g(c 
c) _ c). 

Let W1^ , w(2) be the solutions to (2.6) with the right-hand side of (2.6c) replaced by 
g(1), gv2) respectively, and let e-2t v(i) be the discrete function corresponding to 

FV w(i ). By using Theorems 4.1, 4.2 and 5.1 of [1], we then obtain in a straightfor- 
ward manner 

0 + 
I + ak v=r+ lle 1' ) 1 + ak v) 

at - aoO o 
< const 1 - h2m le-a tfvIIt2 

(3.12) 

1 F 
+ I jE (Ile(Cyk)112 + IID e(ok)112) 

+ sup lid(t)IIx + SupIID+ d(t) II2] 

and 

(3.13) (c1_- + \2 lie tv(2)11 I const k-1 d. 

Since f 1>5h-1 (a + Ilc)-2dc < O(h/a), we get from Lemma 3.1 

( 2 
a1X - 

ao (2)IIX 1 + a-k /O xo t 

< const oY 1 h2 m E le( r 
kD+ tfv(ok) lk) 

v=-r+ 1 \=s 

(3.14) -s-1 
+ (a - aYl)-2[Z (IID+ te(ok)112 + IID+xD+t e(ok)II2) 

_=0 

+ sup IID+ td(T)II2 + sup IID+D+ td(T)IIl2. 
I>isk t5 (3.2>)sk 4) no p 

Adding (3.5), (3.12), (3.14) now proves the theorem. 



404 BERTIL GUSTAFSSON 

4. A Numerical Example. Several examples have been tested which confirm the 
results of Theorem 2.2, and we present one of them here. 

Consider the wave equation written in the form 

(4.1) au/at=[ ]au/ax U 0 [ x <?1, 
1 0 UII 

with boundary conditions 
(4.2) UI(O, t) = UI(1, t) = 0. 

It is approximated by the leap-frog scheme 

(4.3) Vv(t + k) = Vv(t - k) [ ] (VV+ i (t) - VV_(t)), k/h, 

which is second-order accurate. 
The boundary conditions are 

( V(t) = VI(t) = O, 

(4.4) VII(t) = 2 VI1(t)- VII(t) 

VI(t) = 2 
VI1_1 

(t) - 

The last two conditions are locally second-order accurate, i.e., 1 = m = 2 in (2.3c). 
By a transformation of variables: 

yI = (VI + VII)/, 

yII = (VI, - VI)/AF, y = (yI IIY' 
we obtain the scheme 

/-1 0\ 

(4.5) yv(t + k) = yv(t - k) - ?et )(Yv + 1 (t) - YV_1 (t)) 
\O 1/ 

For the right half-plane problem, the boundary conditions are 

(4.6a) Yo(t) - 

(4.6b) yI (t) + yII(t) = 2(y, (t) + yII(t)) -(y(t) + yI'(t)). 
The general solution in 12(0, 00) to the resolvent equation is, for Izl > 1, 

Xi K: 
w=, 

2K 2 

where K1 satisfies 

(4.7a) Z2K = K + cZ(K2 - 1), IKI < 1, 

and where K2 satisfies 
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(4.7b) Z2K = K - XZ(K2 - 1), IKI< 1. 

The boundary condition (4.6), with an inhomogenous term included, implies 

W1 - X2 = g0) 

(4.8a) 

(K1 1) W1 + (K2 - 1)2X2 = 90 ) 

and the condition for a nontrivial solution is 

(4.9) D(z) -(1 - 1)2 + (K2 - 1)2 = 0. 

Since K 1 = -K2, (4.9) means that K1 = ?i. These roots correspond to the z-values 

Z0 = ? ai + Ai/- a2, and the determinant condition Det(D(1)) 0 O of Theorem 2.2 
is therefore satisfied. 

It is easily shown that, in a neighborhood of zo, there is a constant c > 0 such 
that the determinant satisfies ID(z) I > c Iz - zo 1/2. (The Eqs. (4.7a, b) have double 
roots at z = zo.) From (4.8), it then-follows that 

(4.10) IX 12 + 1X2 12 const (lgl)2 + Ig( 

and we obtain 

wl,I < const Ig 12h 
(Izl- 1)2 0 

in a neighborhood of z = zo. 
Since Det(D(z)) # 0 at all other points z with Iz I > 1, the conditions of Theorem 

2.2 are satisfied. 
For the numerical experiment, the initial condition was 

VI(O) = - sin(2iTv/N)) 

,'V = =0 1 ,1, N, 

VV (?) =? 

and V"(k) was-obtained by the Lax-Wendroff one-step scheme. The scheme was run 
with a = 0.9 for N = 100, 200, 500. The following table shows the error 

F cos(2irt) sin(2irx) 
IIU(t) - V(t)IIx = - V(t) 

sin(27rt) cos(2rx) x 

at t = 0.45 and t = 0.9. 

TABLE 4.1 

t= 0.45 t= 0.90 

N= 100 1.40 10-3 1.98 10-3 

N = 200 3.52* 10-4 4.96 10-4 

N= 500 5.63 I 0-5 7.96 I 0-5 
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It is clear that the convergence rate is of second order. 
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